Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(1): 105667, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36624844

RESUMO

Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.

2.
JCI Insight ; 2(24)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263307

RESUMO

Adaptation to air breathing after birth is dependent upon the synthesis and secretion of pulmonary surfactant by alveolar type 2 (AT2) cells. Surfactant, a complex mixture of phospholipids and proteins, is secreted into the alveolus, where it reduces collapsing forces at the air-liquid interface to maintain lung volumes during the ventilatory cycle. ABCA3, an ATP-dependent Walker domain containing transport protein, is required for surfactant synthesis and lung function at birth. Mutations in ABCA3 cause severe surfactant deficiency and respiratory failure in newborn infants. We conditionally deleted the Abca3 gene in AT2 cells in the mature mouse lung. Loss of ABCA3 caused alveolar cell injury and respiratory failure. ABCA3-related lung dysfunction was associated with surfactant deficiency, inflammation, and alveolar-capillary leak. Extensive but incomplete deletion of ABCA3 caused alveolar injury and inflammation, and it initiated proliferation of progenitor cells, restoring ABCA3 expression, lung structure, and function. M2-like macrophages were recruited to sites of AT2 cell proliferation during the regenerative process and were present in lung tissue from patients with severe lung disease caused by mutations in ABCA3. The remarkable and selective regeneration of ABCA3-sufficient AT2 progenitor cells provides plausible approaches for future correction of ABCA3 and other genetic disorders associated with surfactant deficiency and acute interstitial lung disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Alvéolos Pulmonares/patologia , Insuficiência Respiratória/genética , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Líquido da Lavagem Broncoalveolar/química , Síndrome de Vazamento Capilar/genética , Proliferação de Células/genética , Deleção de Genes , Humanos , Macrófagos Alveolares/fisiologia , Camundongos Knockout , Fosfolipídeos/metabolismo , Pneumonia/genética , Pneumonia/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Surfactantes Pulmonares/metabolismo , Regeneração
3.
J Clin Invest ; 127(12): 4314-4325, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083321

RESUMO

Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells. EMC3 was essential for the processing and routing of surfactant proteins, SP-B and SP-C, and the biogenesis of the phospholipid transport protein ABCA3. Transcriptomic, lipidomic, and proteomic analyses demonstrated that EMC3 coordinates the assembly of lipids and proteins in AT2 cells that is necessary for surfactant synthesis and function at birth.


Assuntos
Células Epiteliais Alveolares/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Respiração , Células Epiteliais Alveolares/citologia , Animais , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Peptídeos/genética , Proteína B Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...